EMC Technologies Pty Ltd ABN 82 057 105 549 176 Harrick Road Keilor Park Victoria Australia 3042 Ph: + 613 9365 1000 Fax: + 613 9331 7455 email: sales@emctech.com.au ## **SAR Test Report** Report Number: M151240_R2 (Replacing M151240_R1) Evaluation of the SAR of Samsung Galaxy S6 when fitted with the Cellsafe Wide Tested For: Cellsafe Pty Ltd Date of Issue: 15th June 2016 EMC Technologies Pty Ltd reports apply only to the specific samples tested under stated test conditions. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. EMC Technologies Pty Ltd shall have no liability for any deductions, inferences or generalisations drawn by the client or others from EMC Technologies Pty Ltd issued reports. This report shall not be used to claim, constitute or imply product endorsement by EMC Technologies Pty Ltd. Accredited for compliance with ISO/IEC 17025. The results of the test, calibrations and/or measurement included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports. This document shall not be reproduced except in full. #### CONTENTS 2.0 DESCRIPTION OF DEVICE......4 Description of Test Sample 4 2.2.1 2.3 2.4 2.5 2.6 2.6.1 Location5 2.6.2 Accreditations 5 3.1.1 Deviation from reference values6 Temperature and Humidity6 4.0 SAR MEASUREMENT PROCEDURE USING DASY5......7 MEASUREMENT UNCERTAINTY......8 EQUIPMENT LIST AND CALIBRATION DETAILS......10 7.0 SAR TEST METHOD......11 "Touch Position"11 SAR EVALUATION RESULTS......12 APPENDIX A1 Test Sample Photographs16 TEST SETUP PHOTOGRAPHS......19 APPENDIX B Plots Of The SAR Measurements......20 APPENDIX C DESCRIPTION OF SAR MEASUREMENT SYSTEM......35 APPENDIX D CALIBRATION DOCUMENTS38 ## SAR Test Report M151240_R2 # Evaluation of the SAR of Samsung Galaxy S6 When Fitted with the Cellsafe Wide ## 1.0 GENERAL INFORMATION **Test Samples:** 1. Samsung Galaxy S6 with and without Cellsafe Wide - 2. Samsung Galaxy S6 Edge with and without Cellsafe Wide - 3. Samsung Galaxy S6 Edge Plus with and without Cellsafe Wide Report No.: M151240_R2 Page 3 of 69 **Device Category:** Portable Transmitter **Test Device:** Production Unit RF exposure Category: General Public/Unaware user Tested for: Cellsafe Pty Ltd Address: 14/1866 Princes Hwy, Clayton, Vic 3168 **Contact:** Aaron Leibovich **Phone:** 9544 4886 Email: sales@cellsafe.com.au Test Standard/s: **Test Officer:** Maximum Exposure Levels to Radiofrequency Fields – 3kHz to 300GHz, ARPANSA 2. EN 62209-1:2006 and EN 62209-2:2010 Human exposure to radio frequency fields from hand-held and body-mounted devices-Human models, instrumentation and procedures. Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range 300 MHz to 3 GHz) Statement Of Compliance: The Cellsafe Wide was found to reduce SAR by 64% to 94% for the bands mentioned in this report. **Test Dates:** 22nd to 23rd December 2015 Peter Jakubiec Chris Zombolas Technical Director **Authorised Signature:** ## 2.0 DESCRIPTION OF DEVICE ## 2.1 Description of Test Sample The Cellsafe Wide is used with Samsung Galaxy S6 and Samsung Galaxy S6 Plus mobiles phones. The mobile phones operate in the E-GSM, DCS and WCDMA (UMTS) frequency bands and they have internal antennas. The Samsung Galaxy S6 and Samsung Galaxy S6 Plus were tested in accordance with EN62209-1 with and without the Cellsafe Wide Smart Chip fitted while operating in the UMTS bands. Each configuration of mobile phone will be referred to as the Device Under Test (DUT) throughout this report. The phones were tested in the Touch position Right with and without the Cellsafe Wide and the SAR values compared. The Tilt and Body positions were not tested at the request of the client. **Table: DUT (Device Under Test) Parameters** Operating Mode During Testing Operating Mode Production Sample Modulation: Antenna type Applicable Head Configurations Battery See Clause 2.3 :UMTS :UMTS :Internal :Touch Right : Internaly Integrated ## 2.2 Test sample Accessories ## 2.2.1 Battery Types SAR measurements were performed with the standard Samsung Galaxy S6 and Samsung Galaxy S6 Plus batteries. ## 2.3 Test Signal, Frequency and Output Power The DUT was provided by Cellsafe. It was put into operation using a Rhodes & Schwarz Radio Communication Tester CMU200 in GSM and UMTS bands. The channels and power classes utilised in the measurements are listed in the tables below. The SAR level of the test sample was measured for the frequency bands as shown in the table below. Communication between the tester and the DUT was maintained by an air link. **Table: Test Frequencies and Power Classes** | Band | Free | quency (N | 1Hz) | Tra | ffic Chanı | Band
Power | Nominal
Power | | |-------------|--------|-----------|--------|------|------------|---------------|------------------|-------| | | Low | Mid | High | Low | Mid | High | Class | (dBm) | | | | | | | | | | | | UMTS Band 2 | 1852.4 | 1880.0 | 1907.6 | 9262 | 9400 | 9538 | 3 | 24 | | UMTS Band 5 | 826.4 | 836.6 | 846.6 | 4132 | 4183 | 4233 | 3 | 24 | | | | | | | | | | | The conducted power of the DUT was not measured as it did not have easily accessible RF test port. ## 2.5 Battery Status The DUT battery was fully charged prior to commencement of each measurement. The battery condition was monitored by measuring the RF power at a defined position inside the phantom before the commencement of each test and again after the completion of the test. ## 2.6 Details of Test Laboratory #### 2.6.1 Location EMC Technologies Pty Ltd 176 Harrick Road Keilor Park, (Melbourne) Victoria Australia 3042 Telephone: +61 3 9365 1000 Facsimile: +61 3 9331 7455 email: sales@emctech.com.au website: www.emctech.com.au ## 2.6.2 Accreditations EMC Technologies Pty. Ltd. is accredited by the National Association of Testing Authorities, Australia (NATA). **NATA Accredited Laboratory Number: 5292** Last assessed in February 2014, next scheduled assessment in February 2017 EMC Technologies Pty Ltd is NATA accredited for the following RF Human Exposure standards: AS/NZS 2772.2 2011: Radiofrequency Fields. Part 2: Principles and methods of measurement and computation - 3kHz to Report No.: M151240_R2 Page 5 of 69 300 GHz. ACMA: Radiocommunications (Electromagnetic Radiation — Human Exposure) Standard 2003 **EN 50360: 2001** Product standard to demonstrate the compliance of Mobile Phones with the basic restrictions related to human exposure to electromagnetic fields (300 MHz – 3 GHz) EN 62209-1:2006 Human exposure to radio frequency fields from hand-held and body- mounted devices-Human models, instrumentation and procedures. Part 1: Procedure to determine the specific absorption rate (SAR) for handheld devices used in close proximity to the ear (frequency range 300 MHz 3 GHz) EN 62209-2:2010 Human Exposure to radio frequency fields from hand-held and body- mounted wireless communication devices - Human models instrumentation and procedures **Part 2:** Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz IEEE 1528: 2013 Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head Due to Wireless Communications Devices: Measurement Techniques. Refer to NATA website www.nata.asn.au for the full scope of accreditation. #### 2.6.3 Environmental Factors The measurements were performed in a shielded room with no background RF signals. The temperature in the laboratory was controlled to within $20\pm$ 1 °C, the humidity was 49%. See section 3.1.2 for measured temperature and humidity. The liquid parameters were measured daily prior to the commencement of each test. Tests were performed to check that reflections within the environment did not influence the SAR measurements. The noise floor of the DASY5 SAR measurement system using either the ET3DV6 E-field probe is less than $5\mu V$ in both air and liquid mediums. ## 3.0 CALIBRATION AND VERIFICATION PROCEDURES AND DATA Prior to the SAR assessment, the system verification kit was used to verify that the DASY5 was operating within its specifications. The system check was performed at the frequencies listed below using the SPEAG calibrated dipoles. The reference dipoles are highly symmetric and matched at the centre frequency for the specified liquid and distance to the phantom. The accurate distance between the liquid surface and the dipole centre is achieved with a distance holder that snaps onto the dipole. System verification is performed by feeding a known power level into a reference dipole, set at a known distance from the phantom. The measured SAR is compared to the theoretically derived level, and must be within ±10%. #### 3.1.1 Deviation from reference values The EN62209 reference SAR values are derived numerically for a given phantom and dipole construction, at the frequencies listed below. These reference SAR values are obtained from the EN62209 standard and are normalized to 1W. The SPEAG calibration reference SAR value is the SAR validation result obtained in a specific dielectric liquid using the verification dipole during calibration. The measured ten-gram SAR should be within ±10% of the expected target reference values shown in table below. Table: Deviation from reference validation values | Table. Devic | Table: Deviation from reference validation values | | | | | | | | | | | |--------------------------|---|---|--
--|---------------------------------------|--|---|--|--|--|--| | Date | Frequency
(MHz) | Measured
SAR 10g
(input power
= 250mW) | Measured
SAR 10g
(Normalized
to 1W) | SPEAG
Calibration
Reference
SAR Value
10g (mW/g) | Deviation
From
SPEAG
10g (%) | EN62209
Reference
SAR
Value 10g
(mW/g) | Deviation
From
EN62209
10g (%) | | | | | | 22 nd Dec. 15 | 900 | 1.72 | 6.88 | 6.79 | 1.33 | 6.99 | -1.57 | | | | | | 23 rd Dec. 15 | 1800 | 4.98 | 19.92 | 20.1 | -0.90 | 20.1 | -0.90 | | | | | Note: All reference SAR values are normalized to 1W input power. ## 3.1.2 Temperature and Humidity The humidity and dielectric/ambient temperatures are recorded during the assessment of the tissue material dielectric parameters. The difference between the ambient temperature of the liquid during the dielectric measurement and the temperature during tests was less than |2|°C. Table: Temperature and Humidity recorded for each day | Date | Ambient
Temperature (°C) | Liquid
Temperature (°C) | Humidity (%) | |-------------------------------|-----------------------------|----------------------------|--------------| | 1 st December 2015 | 20.3 | 20.0 | 53 | | 2 nd December 2015 | 20.2 | 20.0 | 55 | ## 4.0 SAR MEASUREMENT PROCEDURE USING DASY5 The SAR evaluation was performed with the SPEAG DASY5 System (**Version 52**). A summary of the procedure follows: - a) A measurement of the SAR value at a fixed location is used as a reference value for assessing the power drop of the DUT. The SAR at this point is measured at the start of the test and then again at the end of the test. - b) The SAR distribution at the exposed side of the head or the flat section of the flat phantom is measured at a distance of 4.0 mm from the inner surface of the shell. The area covers the entire dimension of the DUT and the horizontal grid spacing is 15 mm x 15 mm. The actual largest Area Scan has dimensions of 220 mm x 120 mm surrounding the test device. Based on this data, the area of the maximum absorption is determined by Spline interpolation. - c) Around this point, a volume of 32 mm x 32 mm x 30 mm is assessed by measuring 5 x 5 x 7 points. On the basis of this data set, the spatial peak SAR value is evaluated with the following procedure: - (i) The data at the surface are extrapolated, since the centre of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 4 mm. The extrapolation is based on a least square algorithm. A polynomial of the fourth order is calculated through the points in z-axes. This polynomial is then used to evaluate the points between the surface and the probe tip. - d) - (i) The maximum interpolated value is searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g and 10 g) are computed using the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one-dimensional splines with the "Not a knot"- condition (in x, y and z-direction). The volume is integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) are interpolated to calculate the averages. - (ii) All neighbouring volumes are evaluated until no neighbouring volume with a higher average value is found. - (iii) The SAR value at the same location as in Step (a) is again measured and the power drift is recorded. The uncertainty analysis is based on the template listed in the EN 62209-1 and EN62209-2 for both Handset SAR tests and Validation uncertainty. The measurement uncertainty of a specific device is evaluated independently and the total uncertainty for both evaluations (95% confidence level) must be less than 30%. Report No.: M151240_R2 Page 8 of 69 Table: Uncertainty Budget for DASY5 Version 52 - DUT SAR test | Table: Unc | Citallity E | Juugot i | OI DA | 010 1013 | 1011 02 1 | DOI OAN I | 001 | | |--|------------------|----------------|-------|---------------------|----------------------|-------------------|--------------------|------| | Error Description | Uncert.
Value | Prob.
Dist. | Div. | C _i (1g) | C _i (10g) | 1g u _i | 10g u _i | Vi | | Measurement System | | | | | | | | | | Probe Calibration | 6 | N | 1.00 | 1 | 1 | 6.00 | 6.00 | - 00 | | Axial Isotropy | 4.7 | R | 1.73 | 0.7 | 0.7 | 1.90 | 1.90 | 8 | | Hemispherical Isotropy | 9.6 | R | 1.73 | 0.7 | 0.7 | 3.88 | 3.88 | ∞ | | Boundary Effects | 1 | R | 1.73 | 1 | 1 | 0.58 | 0.58 | ∞ | | Linearity | 4.7 | R | 1.73 | 1 | 1 | 2.71 | 2.71 | ∞ | | System Detection Limits | 1 | R | 1.73 | 1 | 1 | 0.58 | 0.58 | ∞ | | Modulation response | 2.4 | R | 1.73 | 1 | 1 | 1.39 | 1.39 | ∞ | | Readout Electronics | 0.3 | N | 1.00 | 1 | 1 | 0.30 | 0.30 | ∞ | | Response Time | 0.8 | R | 1.73 | 1 | 1 | 0.46 | 0.46 | ∞ | | Integration Time | 2.6 | R | 1.73 | 1 | 1 | 1.50 | 1.50 | ∞ | | RF Ambient Noise | 3 | R | 1.73 | 1 | 1 | 1.73 | 1.73 | ∞ | | RF Ambient Reflections | 3 | R | 1.73 | 1 | 1 | 1.73 | 1.73 | ∞ | | Probe Positioner | 0.4 | R | 1.73 | 1 | 1 | 0.23 | 0.23 | ∞ | | Probe Positioning | 2.9 | R | 1.73 | 1 | 1 | 1.67 | 1.67 | ∞ | | Post Processing | 2 | R | 1.73 | 1 | 1 | 1.15 | 1.15 | ∞ | | Test Sample Related | | | | | | | | | | Power Scaling | 0 | R | 1.73 | 1 | 1 | 0.00 | 0.00 | ∞ | | Test Sample Positioning | 2.9 | N | 1.00 | 1 | 1 | 2.90 | 2.90 | 145 | | Device Holder Uncertainty | 3.6 | N | 1.00 | 1 | 1 | 3.60 | 3.60 | ∞ | | Output Power Variation – SAR Drift
Measurement | 4.72 | R | 1.73 | 1 | 1 | 2.73 | 2.73 | ∞ | | Phantom and Setup | | | | | | | | | | Phantom Uncertainty | 7.6 | R | 1.73 | 1 | 1 | 4.39 | 4.39 | ∞ | | Liquid Conductivity – Deviation from target values | 5 | R | 1.73 | 0.64 | 0.43 | 1.85 | 1.24 | ∞ | | Liquid Permittivity – Deviation from target values | 5 | R | 1.73 | 0.6 | 0.49 | 1.73 | 1.41 | ∞ | | Liquid Conductivity – Measurement uncertainty | 2.5 | N | 1.00 | 0.64 | 0.43 | 1.60 | 1.08 | ∞ | | Liquid Permittivity – Measurement uncertainty | 2.5 | N | 1.00 | 0.6 | 0.49 | 1.50 | 1.23 | ∞ | | Temp.unc Conductivity | 3.4 | R | 1.73 | 0.78 | 0.71 | 1.53 | 1.39 | ∞ | | Temp. unc Permittivity | 0.4 | R | 1.73 | 0.23 | 0.26 | 0.05 | 0.06 | ∞ | | Combined standard Uncertainty (uc) | | | | | | 11.79 | 11.56 | | | Expanded Uncertainty (95% CONFIDENCE LEVEL) | | | k= | 2 | | 23.58 | 23.11 | | Estimated total measurement uncertainty for the DASY5 measurement system was $\pm 11.56\%$. The extended uncertainty (K = 2) was assessed to be $\pm 23.11\%$ based on 95% confidence level. The uncertainty is not added to the measurement result. Table: Uncertainty Budget for DASY5 Version 52 - Validation | rable: Unicertal | nty bud | geriori | DASY5 Version 52 - | | | - validation | | | |--|------------------|----------------|--------------------|------------------------|----------------------|-------------------|--------------------|----| | Error Description | Uncert.
Value | Prob.
Dist. | Div. | C _i
(1g) | C _i (10g) | 1g u _i | 10g u _i | Vi | | Measurement System | | | | | | | | | | Probe Calibration | 6 | N | 1.00 | 1 | 1 | 6.00 | 6.00 | 8 | | Axial Isotropy | 4.7 | R | 1.73 | 1 | 1 | 2.71 | 2.71 | 8 | | Hemispherical Isotropy | 9.6 | R | 1.73 | 0 | 0 | 0.00 | 0.00 | 8 | | Boundary Effects | 1 | R | 1.73 | 1 | 1 | 0.58 | 0.58 | 8 | | Linearity | 4.7 | R | 1.73 | 1 | 1 | 2.71 | 2.71 | 8 | | System Detection Limits | 1 | R | 1.73 | 1 | 1 | 0.58 | 0.58 | 8 | | Modulation response | 0 | R | 1.73 | 1 | 1 | 0.00 | 0.00 | 8 | | Readout Electronics | 0.3 | N | 1.00 | 1 | 1 | 0.30 | 0.30 | 8 | | Response Time | 0 | R | 1.73 | 1 | 1 | 0.00 | 0.00 | 8 | | Integration Time | 0 | R | 1.73 | 1 | 1 | 0.00 | 0.00 | 8 | | RF Ambient Noise | 1 | R | 1.73 | 1 | 1 | 0.58 | 0.58 | 8 | | RF Ambient Reflections | 1 | R | 1.73 | 1 | 1 | 0.58 | 0.58 | 8 | | Probe Positioner | 0.8 | R | 1.73 | 1 | 1 | 0.46 | 0.46 | 8 | | Probe Positioning | 6.7 | R | 1.73 | 1 | 1 | 3.87 | 3.87 | 8 | | Post Processing | 2 | R | 1.73 | 1 | 1 | 1.15 | 1.15 | 8 | | Dipole Related | Deviation of exp. dipole | 5.5 | R | 1.73 | 1 | 1 | 3.18 | 3.18 | 8 | | Dipole Axis to Liquid Dist. | 2 | R | 1.73 | 1 | 1 | 1.15 | 1.15 | 8 | | Input power & SAR drift | 3.40 | R | 1.73 | 1 | 1 | 1.96 | 1.96 | 8 | | Phantom and Setup | | | | | | | | | | Phantom Uncertainty | 4 | R | 1.73 | 1 | 1 | 2.31 | 2.31 | 8 | | Liquid Conductivity – Deviation from target values | 5 | R | 1.73 | 0.64 | 0.43 | 1.85 | 1.24 | 8 | | Liquid Permittivity – Deviation from target values | 5 | R | 1.73 | 0.6 | 0.49 | 1.73 | 1.41 | 8 | | Liquid Conductivity – Measurement uncertainty | 2.5 | N | 1.00 | 0.64 | 0.43 | 1.60 | 1.08 | 8 | | Liquid Permittivity – Measurement uncertainty | 2.5 | N | 1.00 | 0.26 | 0.26 | 0.65 | 0.65 | 8 | | Temp.unc Conductivity | 3.4 | R | 1.73 | 0.78 | 0.71 | 1.53 | 1.39 | 8 | | Temp. unc Permittivity | 0.4 | R | 1.73 | 0.23 | 0.26 | 0.05 | 0.06 | 8 | | Combined standard Uncertainty (u _c) | | | | | | 10.05 | 9.81 | | | Expanded Uncertainty (95% CONFIDENCE LEVEL) | | | k= | 2 | | 20.10 | 19.63 | | Estimated total measurement uncertainty for the DASY5 measurement system was $\pm 9.81\%$. The extended uncertainty (K = 2) was assessed to be $\pm 19.63\%$ based on 95% confidence level. The uncertainty is not added to the Validation measurement result. # **6.0 EQUIPMENT LIST AND CALIBRATION DETAILS** **Table: SPEAG DASY5 Version 52** | Equipment Type | Manufacturer | Model Number | Serial Number | Calibration
Due | Used For this Test? | |-------------------------------|-----------------|--------------|---------------|--------------------|---------------------| | Robot - Six Axes | Staubli | RX90BL | N/A | Not applicable | ✓ | | Robot Remote Control |
SPEAG | CS7MB | RX90B | Not applicable | ✓ | | SAM Phantom | SPEAG | N/A | 1260 | Not applicable | ✓ | | SAM Phantom | SPEAG | N/A | 1060 | Not applicable | ✓ | | Flat Phantom | AndreT | 10.1 | P 10.1 | Not Applicable | | | Flat Phantom | AndreT | 9.1 | P 9.1 | Not Applicable | | | Flat Phantom | SPEAG | ELI 4.0 | 1101 | Not Applicable | | | Data Acquisition Electronics | SPEAG | DAE3 V1 | 359 | 04-June-2016 | ✓ | | Data Acquisition Electronics | SPEAG | DAE3 V1 | 442 | 03-Dec-2015 | | | Probe E-Field - Dummy | SPEAG | DP1 | N/A | Not applicable | | | Probe E-Field | SPEAG | ET3DV6 | 1380 | 11-Dec-2015 | | | Probe E-Field | SPEAG | ET3DV6 | 1377 | 11-June-2016 | ✓ | | Probe E-Field | SPEAG | ES3DV6 | 3029 | Not Used | | | Probe E-Field | SPEAG | EX3DV4 | 3956 | 15-June-2016 | | | Probe E-Field | SPEAG | EX3DV4 | 7358 | 21- April-2016 | | | Validation Source 150 MHz | SPEAG | CLA150 | 4003 | 3-Dec-2016 | | | Antenna Dipole 300 MHz | SPEAG | D300V3 | 1012 | 11-Dec-2015 | | | Antenna Dipole 450 MHz | SPEAG | D450V3 | 1074 | 11-Dec-2015 | | | Antenna Dipole 600 MHz | SPEAG | D600V3 | 1008 | 16-Oct-2018 | | | Antenna Dipole 750 MHz | SPEAG | D750V2 | 1051 | 13-Dec-2016 | | | Antenna Dipole 900 MHz | SPEAG | D900V2 | 047 | 09-Dec-2017 | ✓ | | Antenna Dipole 1640 MHz | SPEAG | D1640V2 | 314 | 05-Dec-2017 | | | Antenna Dipole 1800 MHz | SPEAG | D1800V2 | 242 | 05-Dec-2017 | ✓ | | Antenna Dipole 1950 MHz | SPEAG | D1950V3 | 1113 | 6-Dec -2015 | | | Antenna Dipole 2300 MHz | SPEAG | D2300V2 | 1032 | 22-Aug-2016 | | | Antenna Dipole 2450 MHz | SPEAG | D2450V2 | 724 | 04-Dec-2015 | | | Antenna Dipole 2600 MHz | SPEAG | D2600V2 | 1044 | 13-Dec-2016 | | | Antenna Dipole 3500 MHz | SPEAG | D3500V2 | 1002 | 13-July-2013 | | | Antenna Dipole 5600 MHz | SPEAG | D5GHzV2 | 1008 | 16-Dec-2016 | | | RF Amplifier | EIN | 603L | N/A | *In test | | | RF Amplifier | Mini-Circuits | ZHL-42 | N/A | *In test | ✓ | | RF Amplifier | Mini-Circuits | ZVE-8G | N/A | *In test | | | Synthesized signal generator | Hewlett Packard | 86630A | 3250A00328 | *In test | ✓ | | RF Power Meter | Hewlett Packard | 437B | 3125012786 | *In test | ✓ | | RF Power Sensor 0.01 - 18 GHz | Hewlett Packard | 8481H | 1545A01634 | 16-Oct-2016 | ✓ | | RF Power Meter | Rohde & Schwarz | NRP | 101415 | 16-Oct-2016 | | | RF Power Sensor | Rohde & Schwarz | NRP - Z81 | 100174 | 19-Oct-2017 | | | RF Power Meter Dual | Hewlett Packard | 435A | 1733A05847 | *In test | ✓ | | RF Power Sensor | Hewlett Packard | 8482A | 2349A10114 | *In test | ✓ | | Network Analyser | Hewlett Packard | 8714B | GB3510035 | 14-Oct-2015 | | | Network Analyser | Hewlett Packard | 8753ES | JP39240130 | 10-Nov-2015 | | | Network Analyser | Hewlett Packard | 8753D | 3410A04122 | 28-Jan-2016 | ✓ | | Dual Directional Coupler | Hewlett Packard | 778D | 1144 04700 | *In test | | | Dual Directional Coupler | NARDA | 3022 | 75453 | *In test | ✓ | | Thermometer | Digitech | QM7217 | T-103 | 27-Aug-2016 | ✓ | | Thermometer | Digitech | QM7217 | T-104 | 15-Dec-2015 | | ^{*} Calibrated during the test for the relevant parameters. Accredited for compliance with ISO/IEC 17025. The results of the test, calibrations and/or measurement included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports. #### 7.0 SAR TEST METHOD ## 7.1 Description of the Test Positions (Head and Body Sections) The SAR measurements are performed on the left and right sides of the head in the Touch position using the centre frequency of each operating band. The configuration giving the maximum mass-averaged SAR is used to test the low-end and high-end frequencies of the transmitting band. Additional SAR measurements were performed in the "body worn position" at the low, middle and high frequencies of operation. See Appendix A for photos of test positions. #### 7.1.1 "Touch Position" The device was positioned with the vertical centre line of the body of the device and the horizontal line crossing the centre of the earpiece in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, the vertical centre line was aligned with the reference plane containing the three ear and mouth reference points. (Left Ear, Right Ear and Mouth). The centre of the earpiece was then aligned with the Right Ear and Left Ear. The Mobile Phone was then moved towards the phantom with the earpiece aligned with the line between the Left Ear and the Right Ear, until the Mobile Phone just touched the ear. With the device maintained in the reference plane, and the Mobile Phone in contact with the ear, the bottom of the Mobile Phone was moved until the front side of the Mobile Phone was in contact with the cheek of the phantom, or until contact with the ear was lost. ## 7.2 ARPANSA RF Exposure Limits for ACMA (Australia) and EN 50360 Table: SAR Exposure Limits | Table: SAR Exposure Limits | | | | | | | | |---------------------------------|---|--|--|--|--|--|--| | Spatial Peak SAR Limits For | | | | | | | | | Head and Partial-Body: | 2.0 mW/g (averaged over any 10g cube of tissue) | | | | | | | | Hands, Wrists, Feet and Ankles: | 4.0 mW/g (averaged over 10g cube of tissue) | | | | | | | | Spatial Average SAR Limits For | | | | | | | | | Whole Body: | 0.08 mW/g | | | | | | | ## 8.0 SAR EVALUATION RESULTS The SAR values averaged over 10 g tissue masses were determined for the sample device for the Right ear configurations of the phantom and the results are given in the tables below. The plots with the corresponding SAR distributions are contained in Appendix B of this report. #### 8.1 SAR Measurement Results Table: SAR Measurement Results - Galaxy S6 | Test Position | Plot
No. | Test
Mode | Test
Ch. | Test
Freq.
(MHz) | SAR
(1g)
mW/g | SAR
(10g)
mW/g | Drift
(dB) | ∈r
(target 41.5 ±5%
39.4 to 43.6) | σ
(target 0.90 ±5%
0.86 to 0.95) | Reduction
of SAR (%) | |---|-------------|--------------|-------------|------------------------|---------------------|----------------------|---------------|---|--|-------------------------| | Touch Right
850MHz 3G
(Band 5) with
Cellsafe Wide | 1 | UMTS | 4183 | 836.6 | 0.012 | 0.009 | -
0.11 | 42.97 | 0.8959 | 93 | | Touch Right
850MHz 3G
(Band 5) | 2 | UMTS | 4183 | 836.6 | 0.146 | 0.118 | 0.08 | 42.97 | 0.8959 | - | | Test Position | Plot
No. | Test
Mode | Test
Ch. | Test
Freq.
(MHz) | SAR
(1g)
mW/g | SAR
(10g)
mW/g | Drift
(dB) | ∈r
(target 41.5 ±5%
39.4 to 43.6) | σ
(target 0.97 ±5%
0.92 to 1.02) | - | | System Check
900MHz | 3 | CW | 1 | 900 | 2.67 | 1.72 | -
0.05 | 42.22 | 0.9577 | - | | Test Position | Plot
No. | Test
Mode | Test
Ch. | Test
Freq.
(MHz) | SAR
(1g)
mW/g | SAR
(10g)
mW/g | Drift
(dB) | ∈r
(target 40.0 ±5%
38.0 to 42.0) | σ
(target 1.40 ±5%
1.33 to 1.47) | Reduction
of SAR (%) | | Touch Right
1900MHz 3G
(Band 2) with
Cellsafe Wide | 4 | UMTS | 9400 | 1880 | 0.046 | 0.027 | 0.2 | 38.55 | 1.449 | 64 | | Touch Right
1900MHz 3G
(Band 2) | 5 | UMTS | 9400 | 1880 | 0.124 | 0.077 | - 0.06 | 38.55 | 1.449 | - | | System Check
1800MHz | 6 | CW | 1 | 1800 | 9.37 | 4.98 | 0.06 | 38.89 | 1.403 | - | **Note:** The uncertainty of the system (± 20.31%) has not been added to the result. Table: SAR Measurement Results - Galaxy S6 Edge | Table: Of the inicada cinema recount | | | | | | | | Culary Co Eago | | | | |---|-------------|--------------|-------------|------------------------|---------------------|----------------------|---------------|---|--|-------------------------|--| | Test Position | Plot
No. | Test
Mode | Test
Ch. | Test
Freq.
(MHz) | SAR
(1g)
mW/g | SAR
(10g)
mW/g | Drift
(dB) | ∈r
(target 41.5 ±5%
39.4 to 43.6) | σ
(target 0.90 ±5%
0.86 to 0.95) | Reduction
of SAR (%) | | | Touch Right
850MHz 3G
(Band 5) with
Cellsafe Wide | 7 | UMTS | 4183 | 836.6 | 0.010 | 0.007
4 | -
0.06 | 42.97 | 0.8959 | 94 | | | Touch Right
850MHz 3G
(Band 5) | 8 | UMTS | 4183 | 836.6 | 0.161 | 0.127 | - 0.04 | 42.97 | 0.8959 | - | | | Test Position | Plot
No. | Test
Mode | Test
Ch. | Test
Freq.
(MHz) | SAR
(1g)
mW/g | SAR
(10g)
mW/g | Drift
(dB) | ∈r
(target 40.0 ±5%
38.0 to 42.0) | σ
(target 1.40 ±5%
1.33 to 1.47) | Reduction
of SAR (%) | | | Touch Right
1900MHz 3G
(Band 2) with
Cellsafe Wide | 9 | UMTS | 9400 | 1880 | 0.015 | 0.009 | -
0.15 | 38.55 | 1.449 | 88 | | | Touch Right
1900MHz 3G
(Band 2) | 10 | UMTS | 9400 | 1880 | 0.118 | 0.073 | 0.02 | 38.55 | 1.449 | | | **Note:** The uncertainty of the system (\pm 20.31%) has not been added to the result. Table: SAR Measurement Results - Galaxy S6 Edge Plus | | | | iic. OAi | | | | | laxy oo Luge i it | | | |---|-------------|--------------|-------------|------------------------|---------------------|----------------------|---------------|---|--|-------------------------| | Test Position | Plot
No. | Test
Mode | Test
Ch. | Test
Freq.
(MHz) | SAR
(1g)
mW/g | SAR
(10g)
mW/g | Drift
(dB) | ∈r
(target 41.5 ±5%
39.4 to 43.6) | σ
(target 0.90 ±5%
0.86 to 0.95) | Reduction
of SAR (%) | | Touch Right
850MHz 3G
(Band 5) with
Cellsafe Wide | 11 | UMTS | 4183 | 836.6 | 0.019 | 0.015 | 0.02 | 42.97 | 0.8959 | 88 |
| Touch Right
850MHz 3G
(Band 5) | 12 | UMTS | 4183 | 836.6 | 0.15 | 0.116 | 0 | 42.97 | 0.8959 | - | | Test Position | Plot
No. | Test
Mode | Test
Ch. | Test
Freq.
(MHz) | SAR
(1g)
mW/g | SAR
(10g)
mW/g | Drift
(dB) | ∈r
(target 40.0 ±5%
38.0 to 42.0) | σ
(target 1.40 ±5%
1.33 to 1.47) | Reduction
of SAR (%) | | Touch Right
1900MHz 3G
(Band 2) with
Cellsafe Wide | 13 | UMTS | 9400 | 1880 | 0.016 | 0.010 | 0.07 | 38.55 | 1.449 | 68 | | Touch Right
1900MHz 3G
(Band 2) | 14 | UMTS | 9400 | 1880 | 0.052 | 0.032 | -
0.21 | 38.55 | 1.449 | - | **Note:** The uncertainty of the system (\pm 20.31%) has not been added to the result. ## 9.0 CONCLUSION The Cellsafe Wide resulted in a SAR reduction of between 64% to 94%. ## **APPENDIX A1 Test Sample Photographs** Photograph Number 01. DUT Samsung Galaxy S6 Accredited for compliance with ISO/IEC 17025. The results of the test, calibrations and/or measurement included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports. ## Photograph Number 02. DUT Samsung Galaxy S6 Edge ## Photograph Number 03. DUT Samsung Galaxy S6 Edge Plus ## **TEST SETUP PHOTOGRAPHS** Photograph Number 04. Touch Right Position Samsung Galaxy S6 Photograph Number 05. Touch Right Position Samsung Galaxy S6 Edge Photograph Number 06. Touch Right Position Samsung Galaxy S6 Edge Plus Accredited for compliance with ISO/IEC 17025. The results of the test, calibrations and/or measurement included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports. ## **APPENDIX B Plots Of The SAR Measurements** DUT Name: Samsung Mobile Phone, Type: SM-G920I, Serial: RF8GB13V7PY Configuration: Touch Right 850MHz 3G (Band 5) with Cellsafe Wide Communication System: 0 - WCDMA - UMTS; Communication System Band: Band 5 850 MHz; Frequency: 836.6 MHz, Communication System PAR: 0.00 dB; PMF: 1.00; Duty Cycle: 1:1.00 Medium Parameters used: f=836.5 MHz; σ = 0.90 S/m; ε_r = 43.0; ρ = 1000.0g/cm³ Phantom section: Right Section #### **DASY Configuration:** Probe: ET3DV6 - SN1377; ConvF: (6.04,6.04,6.04); Calibrated: 11/06/2015; Sensor-Surface: 4 mm (Mechanical Surface Detection) Electronics: DAE3 Sn359; Calibrated: 4/06/2015 Phantom: SAM 12; Type: SAM 12; Serial: 1060 DASY52 52.8.8(1222); SEMCAD X Version 14.6.10 (7331) Touch Right 850MHz 3G (Band 5) with Cellsafe Wide/Channel 4183 Test/Area Scan (141x81x1): Interpolated grid: dx=1.5 mm, dy=1.5 mm; Maximum value of SAR (interpolated) = 0.014 W/kg Touch Right 850MHz 3G (Band 5) with Cellsafe Wide/Channel 4183 Test/Zoom Scan (26x26x36)/Cube 0: Interpolated grid: dx=1.6 mm, dy=1.6 mm, dz=1.0 mm; Reference Value = 3.355 V/m; Power Drift = -0.11 dB Averaged SAR: SAR(1g) = 0.012 W/kg; SAR(10g) = 0.009 W/kg Maximum value of SAR (interpolated) = 0.016 W/kg 0 dB = 0.0137 W/kq = -18.63 dBW/kq DUT Name: Samsung Mobile Phone, Type: SM-G920I, Serial: RF8GB13V7PY Configuration: Touch Right 850MHz 3G (Band 5) Communication System: 0 - WCDMA - UMTS; Communication System Band: Band 5 850 MHz; Frequency: 836.6 MHz, Communication System PAR: 0.00 dB; PMF: 1.00; Duty Cycle: 1:1.00 Medium Parameters used: f=836.5 MHz; σ = 0.90 S/m; ε_r = 43.0; ρ = 1000.0g/cm³ Phantom section: Right Section ## **DASY Configuration:** Probe: ET3DV6 - SN1377; ConvF: (6.04,6.04,6.04); Calibrated: 11/06/2015; Sensor-Surface: 4 mm (Mechanical Surface Detection) Electronics: DAE3 Sn359; Calibrated: 4/06/2015 Phantom: SAM 12; Type: SAM 12; Serial: 1060 DASY52 52.8.8(1222); SEMCAD X Version 14.6.10 (7331) Touch Right 850MHz 3G (Band 5)/Channel 4183 Test/Area Scan (141x81x1): Interpolated grid: dx=1.5 mm, dy=1.5 mm; Maximum value of SAR (interpolated) = 0.152 W/kg **Touch Right 850MHz 3G (Band 5)/Channel 4183 Test/Zoom Scan (26x26x36)/Cube 0:** Interpolated grid: dx=1.6 mm, dy=1.6 mm, dz=1.0 mm; Reference Value = 13.291 V/m; **Power Drift = 0.08 dB** Averaged SAR: SAR(1g) = 0.146 W/kg; SAR(10g) = 0.118 W/kg Maximum value of SAR (interpolated) = 0.166 W/kg 0 dB = 0.152 W/kg = -8.18 dBW/kg DUT Name: Samsung Mobile Phone, Type: SM-G920I, Serial: RF8GB13V7PY Configuration: Touch Right 1900MHz 3G (Band 2) with Cellsafe Wide Communication System: 0 - WCDMA - UMTS; Communication System Band: Band 2 1850 MHz; Frequency: 1880 MHz, Communication System PAR: 0.00 dB; PMF: 1.00; Duty Cycle: 1:1.00 Medium Parameters used: f=1879.65 MHz; $\sigma = 1.45 \text{ S/m}$; $\epsilon_r = 38.6$; $\rho = 1000.0 \text{g/cm}^3$ Phantom section: Right Section ## **DASY Configuration:** Probe: ET3DV6 - SN1377; ConvF: (5.06,5.06,5.06); Calibrated: 11/06/2015; Sensor-Surface: 4 mm (Mechanical Surface Detection) Electronics: DAE3 Sn359: Calibrated: 4/06/2015 Phantom: SAM 22; Type: SAM 22; Serial: 1260 DASY52 52.8.8(1222); SEMCAD X Version 14.6.10 (7331) Touch Right 1900MHz 3G (Band 2) with Cellsafe Wide/Channel 9400 Test/Area Scan (141x81x1): Interpolated grid: dx=1.5 mm, dy=1.5 mm; Maximum value of SAR (interpolated) = 0.054 W/kg Touch Right 1900MHz 3G (Band 2) with Cellsafe Wide/Channel 9400 Test/Zoom Scan (21x21x36)/Cube 0: Interpolated grid: dx=1.6 mm, dy=1.6 mm, dz=1.0 mm; Reference Value = 3.519 V/m; Power Drift = 0.20 dB Averaged SAR: SAR(1g) = 0.046 W/kg; SAR(10g) = 0.027 W/kg Maximum value of SAR (interpolated) = 0.071 W/kg 0 dB = 0.0538 W/kg = -12.69 dBW/kg DUT Name: Samsung Mobile Phone, Type: SM-G920I, Serial: RF8GB13V7PY Configuration: Touch Right 1900MHz 3G (Band 2) Communication System: 0 - WCDMA - UMTS; Communication System Band: Band 2 1850 MHz; Frequency: 1880 MHz, Communication System PAR: 0.00 dB; PMF: 1.00; Duty Cycle: 1:1.00 Medium Parameters used: f=1879.65 MHz; $\sigma = 1.45 \text{ S/m}$; $\epsilon_r = 38.6$; $\rho = 1000.0 \text{g/cm}^3$ Phantom section: Right Section ## **DASY Configuration:** Probe: ET3DV6 - SN1377; ConvF: (5.06,5.06,5.06); Calibrated: 11/06/2015; Sensor-Surface: 4 mm (Mechanical Surface Detection) Electronics: DAE3 Sn359; Calibrated: 4/06/2015 Phantom: SAM 22; Type: SAM 22; Serial: 1260 DASY52 52.8.8(1222); SEMCAD X Version 14.6.10 (7331) Touch Right 1900MHz 3G (Band 2)/Channel 9400 Test/Area Scan (141x81x1): Interpolated grid: dx=1.5 mm, dy=1.5 mm; Maximum value of SAR (interpolated) = 0.140 W/kg Touch Right 1900MHz 3G (Band 2)/Channel 9400 Test/Zoom Scan (21x21x36)/Cube 0: Interpolated grid: dx=1.6 mm, dy=1.6 mm, dz=1.0 mm; Reference Value = 6.236 V/m; Power Drift = -0.06 dB Averaged SAR: SAR(1g) = 0.124 W/kg; SAR(10g) = 0.077 W/kg Maximum value of SAR (interpolated) = 0.183 W/kg 0 dB = 0.140 W/kg = -8.54 dBW/kg DUT Name: Dipole 900 MHz, Type: DV900V2, Serial: 047 Configuration: System Check 900MHz Communication System: 0 - CW; Communication System Band: 900 MHz; Frequency: 900.0 MHz, Communication System PAR: 0.00 dB; PMF: 0.00; Duty Cycle: 1:1.00 Medium Parameters used: f=900 MHz; σ = 0.96 S/m; ε_r = 42.2; ρ = 1000.0g/cm³ Phantom section: Flat Section ## **DASY Configuration:** Probe: ET3DV6 - SN1377; ConvF: (6.04,6.04,6.04); Calibrated: 11/06/2015; Sensor-Surface: 4 mm (Mechanical Surface Detection) Electronics: DAE3 Sn359; Calibrated: 4/06/2015 Phantom: SAM 12; Type: SAM 12; Serial: 1060 DASY52 52.8.8(1222); SEMCAD X Version 14.6.10 (7331) System Check 900MHz/Channel 1 Test/Area Scan (51x51x1): Interpolated grid: dx=1.5 mm, dy=1.5 mm; Maximum value of SAR (interpolated) = 2.900 W/kg System Check 900MHz/Channel 1 Test/Zoom Scan (31x31x36)/Cube 0: Interpolated grid: dx=1.0 mm, dy=1.0 mm, dz=1.0 mm; Reference Value = 56.702 V/m; Power Drift = -0.06 dB Averaged SAR: SAR(1g) = 2.670 W/kg; SAR(10g) = 1.720 W/kg Maximum value of SAR (interpolated) = 3.960 W/kg 0 dB = 2.90 W/kg = 4.62 dBW/kg DUT Name: Dipole 1800 MHz, Type: DV1800V2, Serial: 242 Configuration: System Check 1800MHz Communication System: 0 - CW; Communication System Band: 1800 MHz; Frequency: 1800 MHz, Communication System PAR: 0.00 dB; PMF: 0.00; Duty Cycle: 1:1.00 Medium Parameters used: f=1799.9 MHz; σ = 1.40 S/m; ϵ_r = 38.9; ρ = 1000.0g/cm³ Phantom section: Flat Section ## **DASY Configuration:** Probe: ET3DV6 - SN1377; ConvF: (5.06,5.06,5.06); Calibrated: 11/06/2015; Sensor-Surface: 4 mm (Mechanical Surface Detection) Electronics: DAE3 Sn359; Calibrated: 4/06/2015 Phantom: SAM 22; Type: SAM 22; Serial: 1260 DASY52 52.8.8(1222); SEMCAD X Version 14.6.10 (7331) System Check 1800MHz/Channel 1 Test/Area Scan (51x51x1): Interpolated grid: dx=1.5 mm, dy=1.5 mm; Maximum value of SAR (interpolated) = 11.300 W/kg System Check 1800MHz/Channel 1 Test/Zoom Scan (31x31x36)/Cube 0: Interpolated grid: dx=1.0 mm, dy=1.0 mm, dz=1.0 mm; Reference Value = 90.211 V/m; Power Drift = 0.06 dB Averaged SAR: SAR(1g) = 9.370 W/kg; SAR(10g) = 4.980 W/kg Maximum value of SAR (interpolated) = 16.200 W/kg 0 dB = 11.3 W/kg = 10.53 dBW/kg DUT Name: Samsung Mobile Phone, Type: SM-G925I, Serial: RF8G600G6SN Configuration: Touch Right 850MHz 3G (Band 5) with Cellsafe Wide Communication System: 0 - WCDMA - UMTS; Communication System Band: Band 5 850 MHz; Frequency: 836.6 MHz, Communication System PAR: 0.00 dB; PMF: 1.00; Duty Cycle: 1:1.00 Medium Parameters used: f=836.5 MHz; σ = 0.90 S/m; ε_r = 43.0; ρ = 1000.0g/cm³ Phantom section: Right Section #### **DASY Configuration:** Probe: ET3DV6 - SN1377; ConvF: (6.04,6.04,6.04); Calibrated: 11/06/2015; Sensor-Surface: 4 mm (Mechanical Surface Detection) Electronics: DAE3 Sn359; Calibrated: 4/06/2015 Phantom: SAM 12; Type: SAM 12; Serial: 1060 DASY52 52.8.8(1222); SEMCAD X Version 14.6.10 (7331) Touch Right 850MHz 3G (Band 5) with Cellsafe Wide/Channel 4183 Test/Area Scan (141x81x1): Interpolated grid: dx=1.5 mm, dy=1.5
mm; Maximum value of SAR (interpolated) = 0.011 W/kg Touch Right 850MHz 3G (Band 5) with Cellsafe Wide/Channel 4183 Test/Zoom Scan (26x26x36)/Cube 0: Interpolated grid: dx=1.6 mm, dy=1.6 mm, dz=1.0 mm; Reference Value = 2.935 V/m; Power Drift = -0.06 dB Averaged SAR: SAR(1g) = 0.010 W/kg; SAR(10g) = 0.007 W/kg Maximum value of SAR (interpolated) = 0.013 W/kg 0 dB = 0.0110 W/kg = -19.59 dBW/kg DUT Name: Samsung Mobile Phone, Type: SM-G925I, Serial: RF8G600G6SN Configuration: Touch Right 850MHz 3G (Band 5) Communication System: 0 - WCDMA - UMTS; Communication System Band: Band 5 850 MHz; Frequency: 836.6 MHz, Communication System PAR: 0.00 dB; PMF: 1.00; Duty Cycle: 1:1.00 Medium Parameters used: f=836.5 MHz; σ = 0.90 S/m; ε_r = 43.0; ρ = 1000.0g/cm³ Phantom section: Right Section ## **DASY Configuration:** Probe: ET3DV6 - SN1377; ConvF: (6.04,6.04,6.04); Calibrated: 11/06/2015; Sensor-Surface: 4 mm (Mechanical Surface Detection) Electronics: DAE3 Sn359; Calibrated: 4/06/2015 Phantom: SAM 12; Type: SAM 12; Serial: 1060 DASY52 52.8.8(1222); SEMCAD X Version 14.6.10 (7331) Touch Right 850MHz 3G (Band 5)/Channel 4183 Test/Area Scan (141x81x1): Interpolated grid: dx=1.5 mm, dy=1.5 mm; Maximum value of SAR (interpolated) = 0.172 W/kg **Touch Right 850MHz 3G (Band 5)/Channel 4183 Test/Zoom Scan (26x26x36)/Cube 0:** Interpolated grid: dx=1.6 mm, dy=1.6 mm, dz=1.0 mm; Reference Value = 14.207 V/m; **Power Drift = -0.04 dB** Averaged SAR: SAR(1g) = 0.161 W/kg; SAR(10g) = 0.127 W/kg Maximum value of SAR (interpolated) = 0.195 W/kg 0 dB = 0.172 W/kg = -7.64 dBW/kg DUT Name: Samsung Mobile Phone, Type: SM-G925I, Serial: RF8G600G6SN Configuration: Touch Right 1900MHz 3G (Band 2) with Cellsafe Wide Communication System: 0 - WCDMA - UMTS; Communication System Band: Band 2 1850 MHz; Frequency: 1880 MHz, Communication System PAR: 0.00 dB; PMF: 1.00; Duty Cycle: 1:1.00 Medium Parameters used: f=1879.65 MHz; $\sigma = 1.45 \text{ S/m}$; $\epsilon_r = 38.6$; $\rho = 1000.0 \text{g/cm}^3$ Phantom section: Right Section ## **DASY Configuration:** Probe: ET3DV6 - SN1377; ConvF: (5.06,5.06,5.06); Calibrated: 11/06/2015; Sensor-Surface: 4 mm (Mechanical Surface Detection) Electronics: DAE3 Sn359; Calibrated: 4/06/2015 Phantom: SAM 22; Type: SAM 22; Serial: 1260 DASY52 52.8.8(1222); SEMCAD X Version 14.6.10 (7331) Touch Right 1900MHz 3G (Band 2) with Cellsafe Wide/Channel 9400 Test/Area Scan (141x81x1): Interpolated grid: dx=1.5 mm, dy=1.5 mm; Maximum value of SAR (interpolated) = 0.016 W/kg Touch Right 1900MHz 3G (Band 2) with Cellsafe Wide/Channel 9400 Test/Zoom Scan (21x21x36)/Cube 0: Interpolated grid: dx=1.6 mm, dy=1.6 mm, dz=1.0 mm; Reference Value = 1.711 V/m; Power Drift = -0.15 dB Averaged SAR: SAR(1g) = 0.015 W/kg; SAR(10g) = 0.009 W/kg Maximum value of SAR (interpolated) = 0.023 W/kg 0 dB = 0.0160 W/kg = -17.96 dBW/kg DUT Name: Samsung Mobile Phone, Type: SM-G925I, Serial: RF8G600G6SN Configuration: Touch Right 1900MHz 3G (Band 2) Communication System: 0 - WCDMA - UMTS; Communication System Band: Band 2 1850 MHz; Frequency: 1880 MHz, Communication System PAR: 0.00 dB; PMF: 1.00; Duty Cycle: 1:1.00 Medium Parameters used: f=1879.65 MHz; $\sigma = 1.45 \text{ S/m}$; $\epsilon_r = 38.6$; $\rho = 1000.0 \text{g/cm}^3$ Phantom section: Right Section ## **DASY Configuration:** Probe: ET3DV6 - SN1377; ConvF: (5.06,5.06,5.06); Calibrated: 11/06/2015; Sensor-Surface: 4 mm (Mechanical Surface Detection) Electronics: DAE3 Sn359; Calibrated: 4/06/2015 Phantom: SAM 22; Type: SAM 22; Serial: 1260 DASY52 52.8.8(1222); SEMCAD X Version 14.6.10 (7331) Touch Right 1900MHz 3G (Band 2)/Channel 9400 Test/Area Scan (141x81x1): Interpolated grid: dx=1.5 mm, dy=1.5 mm; Maximum value of SAR (interpolated) = 0.132 W/kg Touch Right 1900MHz 3G (Band 2)/Channel 9400 Test/Zoom Scan (21x21x36)/Cube 0: Interpolated grid: dx=1.6 mm, dy=1.6 mm, dz=1.0 mm; Reference Value = 2.605 V/m; Power Drift = 0.02 dB Averaged SAR: SAR(1g) = 0.118 W/kg; SAR(10g) = 0.073 W/kg Maximum value of SAR (interpolated) = 0.173 W/kg 0 dB = 0.132 W/kg = -8.79 dBW/kg DUT Name: Samsung Mobile Phone, Type: SM-G928I, Serial: R58G90QK5NR Configuration: Touch Right 850MHz 3G (Band 5) with Cellsafe Wide Communication System: 0 - WCDMA - UMTS; Communication System Band: Band 5 850 MHz; Frequency: 836.6 MHz, Communication System PAR: 0.00 dB; PMF: 1.00; Duty Cycle: 1:1.00 Medium Parameters used: f=836.5 MHz; σ = 0.90 S/m; ε_r = 43.0; ρ = 1000.0g/cm³ Phantom section: Right Section #### **DASY Configuration:** Probe: ET3DV6 - SN1377; ConvF: (6.04,6.04,6.04); Calibrated: 11/06/2015; Sensor-Surface: 4 mm (Mechanical Surface Detection) Electronics: DAE3 Sn359; Calibrated: 4/06/2015 Phantom: SAM 12; Type: SAM 12; Serial: 1060 DASY52 52.8.8(1222); SEMCAD X Version 14.6.10 (7331) Touch Right 850MHz 3G (Band 5) with Cellsafe Wide/Channel 4183 Test/Area Scan (141x81x1): Interpolated grid: dx=1.5 mm, dy=1.5 mm; Maximum value of SAR (interpolated) = 0.019 W/kg Touch Right 850MHz 3G (Band 5) with Cellsafe Wide/Channel 4183 Test/Zoom Scan (26x26x36)/Cube 0: Interpolated grid: dx=1.6 mm, dy=1.6 mm, dz=1.0 mm; Reference Value = 4.552 V/m; Power Drift = 0.02 dB Averaged SAR: SAR(1g) = 0.019 W/kg; SAR(10g) = 0.015 W/kg Maximum value of SAR (interpolated) = 0.023 W/kg 0 dB = 0.0194 W/kg = -17.12 dBW/kg DUT Name: Samsung Mobile Phone, Type: SM-G928I, Serial: R58G90QK5NR Configuration: Touch Right 850MHz 3G (Band 5) Communication System: 0 - WCDMA - UMTS; Communication System Band: Band 5 850 MHz; Frequency: 836.6 MHz, Communication System PAR: 0.00 dB; PMF: 1.00; Duty Cycle: 1:1.00 Medium Parameters used: f=836.5 MHz; σ = 0.90 S/m; ε_r = 43.0; ρ = 1000.0g/cm³ Phantom section: Right Section ## **DASY Configuration:** Probe: ET3DV6 - SN1377; ConvF: (6.04,6.04,6.04); Calibrated: 11/06/2015; Sensor-Surface: 4 mm (Mechanical Surface Detection) Electronics: DAE3 Sn359; Calibrated: 4/06/2015 Phantom: SAM 12; Type: SAM 12; Serial: 1060 DASY52 52.8.8(1222); SEMCAD X Version 14.6.10 (7331) Touch Right 850MHz 3G (Band 5)/Channel 4183 Test/Area Scan (141x81x1): Interpolated grid: dx=1.5 mm, dy=1.5 mm; Maximum value of SAR (interpolated) = 0.160 W/kg **Touch Right 850MHz 3G (Band 5)/Channel 4183 Test/Zoom Scan (21x21x36)/Cube 0:** Interpolated grid: dx=1.6 mm, dy=1.6 mm, dz=1.0 mm; Reference Value = 13.159 V/m; **Power Drift = -0.00 dB** Averaged SAR: SAR(1g) = 0.150 W/kg; SAR(10g) = 0.116 W/kg Maximum value of SAR (interpolated) = 0.187 W/kg 0 dB = 0.160 W/kg = -7.96 dBW/kg DUT Name: Samsung Mobile Phone, Type: SM-G928I, Serial: R58G90QK5NR Configuration: Touch Right 1900MHz 3G (Band 2) with Cellsafe Wide Communication System: 0 - WCDMA - UMTS; Communication System Band: Band 2 1850 MHz; Frequency: 1880 MHz, Communication System PAR: 0.00 dB; PMF: 1.00; Duty Cycle: 1:1.00 Medium Parameters used: f=1879.65 MHz; $\sigma = 1.45 \text{ S/m}$; $\epsilon_r = 38.6$; $\rho = 1000.0 \text{g/cm}^3$ Phantom section: Right Section ## **DASY Configuration:** Probe: ET3DV6 - SN1377; ConvF: (5.06,5.06,5.06); Calibrated: 11/06/2015; Sensor-Surface: 4 mm (Mechanical Surface Detection) Electronics: DAE3 Sn359; Calibrated: 4/06/2015 Phantom: SAM 22; Type: SAM 22; Serial: 1260 DASY52 52.8.8(1222); SEMCAD X Version 14.6.10 (7331) Touch Right 1900MHz 3G (Band 2) with Cellsafe Wide/Channel 9400 Test 3/Area Scan (141x81x1): Interpolated grid: dx=1.5 mm, dy=1.5 mm; Maximum value of SAR (interpolated) = 0.018 W/kg Touch Right 1900MHz 3G (Band 2) with Cellsafe Wide/Channel 9400 Test 3/Zoom Scan (26x26x36)/Cube 0: Interpolated grid: dx=1.6 mm, dy=1.6 mm, dz=1.0 mm; Reference Value = 2.926 V/m; Power Drift = 0.07 dB Averaged SAR: SAR(1g) = 0.016 W/kg; SAR(10g) = 0.010 W/kg Maximum value of SAR (interpolated) = 0.025 W/kg 0 dB = 0.0181 W/kg = -17.42 dBW/kg DUT Name: Samsung Mobile Phone, Type: SM-G928I, Serial: R58G90QK5NR Configuration: Touch Right 1900MHz 3G (Band 2) Communication System: 0 - WCDMA - UMTS; Communication System Band: Band 2 1850 MHz; Frequency: 1880 MHz, Communication System PAR: 0.00 dB; PMF: 1.00; Duty Cycle: 1:1.00 Medium Parameters used: f=1879.65 MHz; σ = 1.45 S/m; $ε_r$ = 38.6; ρ = 1000.0g/cm³ Phantom section: Right Section ## **DASY Configuration:** Probe: ET3DV6 - SN1377; ConvF: (5.06,5.06,5.06); Calibrated: 11/06/2015; Sensor-Surface: 4 mm (Mechanical Surface Detection) Electronics: DAE3 Sn359; Calibrated: 4/06/2015 Phantom: SAM 22; Type: SAM 22; Serial: 1260 DASY52 52.8.8(1222); SEMCAD X Version 14.6.10 (7331) Touch Right 1900MHz 3G (Band 2)/Channel 9400 Test 3/Area Scan (141x81x1): Interpolated grid: dx=1.5 mm, dy=1.5 mm; Maximum value of SAR (interpolated) = 0.061 W/kg Touch Right 1900MHz 3G (Band 2)/Channel 9400 Test 3/Zoom Scan (21x21x36)/Cube 0: Interpolated grid: dx=1.6 mm, dy=1.6 mm, dz=1.0 mm; Reference Value = 4.967 V/m; **Power Drift = -0.21 dB** Averaged SAR: SAR(1g) = 0.052 W/kg; SAR(10g) = 0.032 W/kg Maximum value of SAR (interpolated) = 0.078 W/kg 0 dB = 0.0606 W/kg = -12.18 dBW/kg ## APPENDIX C DESCRIPTION OF SAR MEASUREMENT SYSTEM ## **Probe Positioning System** The measurements were performed with the state of the art automated near-field scanning system **DASY5 Version 52** from Schmid & Partner Engineering AG (SPEAG). The system is based on a high precision 6-axis robot (working range greater than 1.1m), which positions the SAR measurement probes with a positional repeatability of better than ± 0.02 mm. The DASY5 fully complies with the IEEE 1528 and EN62209 SAR measurement requirements. ## **E-Field Probe Type and Performance** The SAR measurements were conducted with the dosimetric probe ET3DV6 was used (manufactured by SPEAG). The SAR probes are designed in the classical triangular configuration and optimised for dosimetric evaluation. The probe has been calibrated and found to be accurate to better than ± 0.25 dB. The probe is suitable for measurements close to material discontinuity at the surface of the
phantom. ## **Data Acquisition Electronics** The data acquisition electronics (DAE3) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. The input impedance of the DAE3 box is 200 M Ω ; the inputs are symmetrical and floating. Common mode rejection is above 80dB.Transmission to the PC-card is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The mechanical probe-mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection. ## **Device Holder for DASY5** The DASY5 device holder supplied by SPEAG is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The rotation centres for both scales is the ear opening. Thus the device needs no repositioning when changing the angles. The DASY5 device holder is made of low-loss material having the following dielectric parameters: relative permittivity ϵ =3 and loss tangent δ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, to reduce the influence on the clamp on the test results. Refer to Appendix A for photograph of device positioning. #### Liquid Depth 15cm During the SAR measurement process the liquid level was maintained to a level of a least 15cm with a tolerance of \pm 0.5cm. ## Phantom Properties (Size, Shape, Shell Thickness, Tissue Material Properties) The phantom used during the SAR testing and validation was the "SAM" phantom from SPEAG. The phantom thickness is 2.0mm+/-0.2 mm and was filled with the required tissue simulating liquid. The dielectric parameters of the simulating liquid were measured prior to SAR assessment using the HP85070A dielectric probe kit and HP8753ES Network Analyser. The target dielectric parameters are shown in the following table. **Table: Target Simulating Liquid Dielectric Values UMTS Bands** | Band | Frequency (MHz) UMTS Band 4 | ∈r
(target) | σ
(target) | ρ
kg/m³ | |------|-----------------------------|----------------------------|----------------------------|------------| | - | 836.6 | 41.5 ±5%
(39.4 to 43.6) | 0.90 ±5%
(0.86 to 0.95) | 1000 | **Note:** The liquid parameters were within the required tolerances of $\pm 5\%$. **Table: Target Simulating Liquid Dielectric Values UMTS Bands** | | Frequency (MHz) | ∈r
(target) | σ
(target) | ρ
kg/m³ | |------|-----------------|----------------------------|----------------------------|------------| | Band | UMTS Band 4 | | | | | Band | UMTS Band 2 | | | | | - | 1880 | 40.0 ±5%
(38.0 to 42.0) | 1.40 ±5%
(1.33 to 1.47) | 1000 | **Note:** The liquid parameters were within the required tolerances of $\pm 5\%$. # **Simulated Tissue Composition Used for SAR Test** The tissue simulating liquids are created prior to the SAR evaluation and often require slight modification each day to obtain the correct dielectric parameters. **Table: Tissue Type:** @ **850/900MHz**Volume of Liquid: 30 Litres | Approximate Composition | % By Weight | |-------------------------|-------------| | Distilled Water | 41.05 | | Salt | 1.35 | | Sugar | 56.5 | | HEC | 1.0 | | Bactericide | 0.1 | **Table: Tissue Type:** @ 1800/1950MHz Volume of Liquid: 30 Litres | Approximate Composition | % By Weight | |-------------------------|-------------| | Distilled Water | 61.17 | | Salt | 0.31 | | Bactericide | 0.29 | | Triton X-100 | 38.23 | # **APPENDIX D CALIBRATION DOCUMENTS** - 1. ET3DV6 SN: 1377 Probe Calibration Certificate - 2. SN: 047 D900V2 Dipole Calibration Certificate - 3. SN: 242 D1800V2 Dipole Calibration Certificate - 4. SN: 359 DAE3 Data Acquisition Electronics Calibration Certificate # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client EMC Technologies Certificate No: ET3-1377_Jun15 ## CALIBRATION CERTIFICATE Object ET3DV6 - SN:1377 Calibration procedure(s) QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date: June 11, 2015 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|-----------------|-----------------------------------|------------------------| | Power meter E4419B | GB41293874 | 01-Apr-15 (No. 217-02128) | Mar-16 | | Power sensor E4412A | MY41498087 | 01-Apr-15 (No. 217-02128) | Mar-16 | | Reference 3 dB Attenuator | SN: S5054 (3c) | 01-Apr-15 (No. 217-02129) | Mar-16 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 01-Apr-15 (No. 217-02132) | Mar-16 | | Reference 30 dB Attenuator | SN: S5129 (30b) | 01-Apr-15 (No. 217-02133) | Mar-16 | | Reference Probe ES3DV2 | SN: 3013 | 30-Dec-14 (No. ES3-3013_Dec14) | Dec-15 | | DAE4 | SN: 660 | 14-Jan-15 (No. DAE4-660_Jan15) | Jan-16 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (in house check Apr-13) | In house check: Apr-16 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-14) | In house check: Oct-15 | Name Function Signature Calibrated by: Claudio Leubler Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: June 15, 2015 This calibration certificate shall not be reproduced except in full without written approval of the laboratory Certificate No: ET3-1377_Jun15 Page 1 of 10 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system ## Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor
offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: ET3-1377_Jun15 Page 2 of 10 ET3DV6 - SN:1377 June 11, 2015 # Probe ET3DV6 SN:1377 Manufactured: Calibrated: August 16, 1999 June 11, 2015 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) Certificate No: ET3-1377_Jun15 Page 3 of 10 ET3DV6-SN:1377 June 11, 2015 # DASY/EASY - Parameters of Probe: ET3DV6 - SN:1377 **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--|----------|----------|----------|-----------| | Norm (μV/(V/m) ²) ^A | 1.95 | 1.92 | 1.94 | ± 10.1 % | | DCP (mV) ^B | 101.0 | 101.0 | 99.0 | | Modulation Calibration Parameters | UID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Unc ^E
(k=2) | |-----|---------------------------|---|---------|------------|-----|---------|----------|---------------------------| | 0 | cw | X | 0.0 | 0.0 | 1.0 | 0.00 | 269.0 | ±3.5 % | | | | Y | 0.0 | 0.0 | 1.0 | | 283.5 | | | | | Z | 0.0 | 0.0 | 1.0 | | 265.9 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: ET3-1377_Jun15 Page 4 of 10 A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 5). Numerical linearization parameter: uncertainty not required. Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the ET3DV6-SN:1377 June 11, 2015 # DASY/EASY - Parameters of Probe: ET3DV6 - SN:1377 #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc.
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|---------------| | 900 | 41.5 | 0.97 | 6.04 | 6.04 | 6.04 | 0.36 | 2.57 | ± 12.0 % | | 1810 | 40.0 | 1.40 | 5.06 | 5.06 | 5.06 | 0.80 | 1.98 | ± 12.0 % | ^C Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Certificate No: ET3-1377_Jun15 Page 5 of 10 June 11, 2015 ET3DV6- SN:1377 # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) Certificate No: ET3-1377_Jun15 Page 6 of 10 ET3DV6- SN:1377 June 11, 2015 # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) Certificate No: ET3-1377_Jun15 Page 7 of 10 ET3DV6- SN:1377 June 11, 2015 # Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) Certificate No: ET3-1377_Jun15 Page 8 of 10 June 11, 2015 ET3DV6- SN:1377 **Conversion Factor Assessment** f = 900 MHz, WGLS R9 (H_convF) f = 1810 MHz, WGLS R22 (H_convF) 3.0 **Deviation from Isotropy in Liquid** Error (φ, ϑ), f = 900 MHz 1.0 0.8 0.6 0.4 0.4 0.2 0.0 -0.2 -0.4 -0.6 -0.8 Certificate No: ET3-1377_Jun15 Page 9 of 10 Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2) -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 ET3DV6- SN:1377 June 11, 2015 # DASY/EASY - Parameters of Probe: ET3DV6 - SN:1377 ## **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 87.8 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | enabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 10 mm | | Tip Diameter | 6.8 mm | | Probe Tip to Sensor X Calibration Point | 2.7 mm | | Probe Tip to Sensor Y Calibration Point | 2.7 mm | | Probe Tip to Sensor Z Calibration Point | 2.7 mm | | Recommended Measurement Distance from Surface | 4 mm | Certificate No: ET3-1377_Jun15 Page 10 of 10 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S C S Accreditation No.: SCS 108 Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates temporal tem # CALIBRATION CERTIFICATE Object D900V2 - SN: 047 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: December 09, 2014 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | |-----------------------------|--------------------|-----------------------------------|------------------------|--| | Power meter EPM-442A | GB37480704 | 07-Oct-14 (No. 217-02020) | Oct-15 | | | Power sensor HP 8481A | US37292783 | 07-Oct-14 (No. 217-02020) | Oct-15 | | | Power sensor HP 8481A | MY41092317 | 07-Oct-14 (No. 217-02021) | Oct-15 | | | Reference 20 dB Attenuator | SN: 5058 (20k) | 03-Apr-14 (No. 217-01918) | Apr-15 | | | Type-N mismatch combination | SN: 5047.2 / 06327 | 03-Apr-14 (No. 217-01921) | Apr-15 | | | Reference Probe ES3DV3 | SN: 3205 | 30-Dec-13 (No. ES3-3205_Dec13) | Dec-14 | | | DAE4 | SN: 601 | 18-Aug-14 (No. DAE4-601_Aug14) | Aug-15 | | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | | RF generator R&S SMT-06 | 100005 | 04-Aug-99 (in house check Oct-13) | In house check: Oct-16 | | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-14) | In house check: Oct-15 | Name Function Signature Calibrated by: Michael Weber Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: December 11, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D900V2-047_Dec14 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland C Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ## Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for
nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D900V2-047_Dec14 Page 2 of 8 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.8 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 900 MHz ± 1 MHz | | #### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.97 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.0 ± 6 % | 0.94 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.59 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 10.6 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.67 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.79 W/kg ± 16.5 % (k=2) | #### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.0 | 1.05 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 54.1 ± 6 % | 1.02 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.62 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 10.7 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.71 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 6.94 W/kg ± 16.5 % (k=2) | Certificate No: D900V2-047_Dec14 Page 3 of 8 # Appendix (Additional assessments outside the scope of SCS108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 51.7 Ω - 4.6 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 26.4 dB | | ## **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 46.9 Ω - 7.0 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 22.1 dB | | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.410 ns | |----------------------------------|----------| | Electrical Delay (one direction) | 1.410 ns | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|------------------| | Manufactured on | October 07, 1998 | Certificate No: D900V2-047_Dec14 Page 4 of 8 #### **DASY5 Validation Report for Head TSL** Date: 09.12.2014 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN: 047 Communication System: UID 0 - CW; Frequency: 900 MHz Medium parameters used: f = 900 MHz; $\sigma = 0.94 \text{ S/m}$; $\varepsilon_r = 41$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(6.09, 6.09, 6.09); Calibrated: 30.12.2013; Sensor-Surface: 3mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 18.08.2014 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.65 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 3.83 W/kg SAR(1 g) = 2.59 W/kg; SAR(10 g) = 1.67 W/kg Maximum value of SAR (measured) = 3.04 W/kg 0 dB = 3.04 W/kg = 4.83 dBW/kg Certificate No: D900V2-047_Dec14 Page 5 of 8 # Impedance Measurement Plot for Head TSL Certificate No: D900V2-047_Dec14 Page 6 of 8 #### **DASY5 Validation Report for Body TSL** Date: 09.12.2014 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN: 047 Communication System: UID 0 - CW; Frequency: 900 MHz Medium parameters used: f = 900 MHz; $\sigma = 1.02$ S/m; $\varepsilon_r = 54.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(5.98, 5.98, 5.98); Calibrated: 30.12.2013; · Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 18.08.2014 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) # Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.98 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.86 W/kg SAR(1 g) = 2.62 W/kg; SAR(10 g) = 1.71 W/kg Maximum value of SAR (measured) = 3.06 W/kg 0 dB = 3.06 W/kg = 4.86 dBW/kg Certificate No: D900V2-047_Dec14 Page 7 of 8 ## Impedance Measurement Plot for Body TSL Certificate No: D900V2-047_Dec14 Page 8 of 8 Accredited for compliance with ISO/IEC 17025. The results of the test, calibrations and/or measurement included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports. #### Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland S C Accreditation No.: SCS 108 Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Certificate No: D1800V2-242_Dec14 #### Client **EMC Technologies CALIBRATION CERTIFICATE** Object D1800V2 - SN: 242 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: December 05, 2014 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 07-Oct-14 (No. 217-02020) Oct-15 Power sensor HP 8481A US37292783 07-Oct-14 (No. 217-02020) Oct-15 Power sensor HP 8481A MY41092317 07-Oct-14 (No. 217-02021) Oct-15 Reference 20 dB Attenuator SN: 5058 (20k) 03-Apr-14 (No. 217-01918) Apr-15 Type-N mismatch combination SN: 5047.2 / 06327 03-Apr-14 (No. 217-01921) Apr-15 Reference Probe ES3DV3 SN: 3205 30-Dec-13 (No. ES3-3205_Dec13) Dec-14 DAE4 SN: 601 18-Aug-14 (No. DAE4-601_Aug14) Aug-15 Secondary Standards ID# Check Date (in house) Scheduled Check RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-13) In house check: Oct-16 US37390585 S4206 Network Analyzer HP 8753E 18-Oct-01 (in house check Oct-14) In house check: Oct-15 Name Function Calibrated by: Michael Weber Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: December 8, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D1800V2-242_Dec14 Page 1 of 8 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating
liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** d) DASY4/5 System Handbook # Methods Applied and Interpretation of Parameters: - · Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D1800V2-242 Dec14 Page 2 of 8 ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.8 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1800 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.0 ± 6 % | 1.41 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.73 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 38.5 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.06 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.1 W/kg ± 16.5 % (k=2) | #### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 51.9 ± 6 % | 1.53 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | **** | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.64 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 38.2 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.08 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.2 W/kg ± 16.5 % (k=2) | Certificate No: D1800V2-242_Dec14 Page 3 of 8 #### Appendix (Additional assessments outside the scope of SCS108) ## Antenna Parameters with Head TSL | Impedance, transformed to feed point | 47.6 Ω - 5.7 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 24.0 dB | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 44.3 Ω - 5.9 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 21.2 dB | | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.196 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | | |-----------------|-------------------|--| | Manufactured on | December 10, 1998 | | Certificate No: D1800V2-242_Dec14 Page 4 of 8 #### **DASY5 Validation Report for Head TSL** Date: 05.12.2014 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN: 242 Communication System: UID 0 - CW; Frequency: 1800 MHz Medium parameters used: f = 1800 MHz; $\sigma = 1.41 \text{ S/m}$; $\varepsilon_r = 39$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(5.09, 5.09, 5.09); Calibrated: 30.12.2013; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 18.08.2014 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.91 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 18.1 W/kg SAR(1 g) = 9.73 W/kg; SAR(10 g) = 5.06 W/kg Maximum value of SAR (measured) = 12.4 W/kg 0 dB = 12.4 W/kg = 10.93 dBW/kg Certificate No: D1800V2-242_Dec14 Page 5 of 8 # Impedance Measurement Plot for Head TSL Certificate No: D1800V2-242_Dec14 Page 6 of 8 #### **DASY5 Validation Report for Body TSL** Date: 05.12.2014 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN: 242 Communication System: UID 0 - CW; Frequency: 1800 MHz Medium parameters used: f = 1800 MHz; $\sigma = 1.53$ S/m; $\varepsilon_r = 51.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.86, 4.86, 4.86); Calibrated: 30.12.2013; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 18.08.2014 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) #### Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 93.17 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 17.0 W/kg SAR(1 g) = 9.64 W/kg; SAR(10 g) = 5.08 W/kg Maximum value of SAR (measured) = 12.2 W/kg 0 dB = 12.2 W/kg = 10.86 dBW/kg Certificate No: D1800V2-242_Dec14 Page 7 of 8 # Impedance Measurement Plot for Body TSL Certificate No: D1800V2-242_Dec14 Page 8 of 8 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Certificate No: DAE3-359 Jun15 # **CALIBRATION CERTIFICATE** **EMC Technologies** Object Client DAE3 - SD 000 D03 AA - SN: 359 Calibration procedure(s) QA CAL-06.v29 Calibration procedure for the data acquisition electronics (DAE) Calibration date: June 04, 2015 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-------------------------------|--------------------
----------------------------|------------------------| | Keithley Multimeter Type 2001 | SN: 0810278 | 03-Oct-14 (No:15573) | Oct-15 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Auto DAE Calibration Unit | SE UWS 053 AA 1001 | 06-Jan-15 (in house check) | In house check: Jan-16 | | Calibrator Box V2.1 | SE UMS 006 AA 1002 | 06-Jan-15 (in house check) | In house check: Jan-16 | Calibrated by: Name Dominique Steffen Function Technician Signature Approved by: Fin Bomholt Deputy Technical Manager Issued: June 4, 2015 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: DAE3-359_Jun15 Page 1 of 5 ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. # Methods Applied and Interpretation of Parameters - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. Certificate No: DAE3-359_Jun15 Page 2 of 5 #### **DC Voltage Measurement** A/D - Converter Resolution nominal High Range: 1LSB = 6.1μV , full range = -100...+300 mV Low Range: 1LSB = 61nV , full range = -1......+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | х | Y | Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 404.591 ± 0.02% (k=2) | 404.657 ± 0.02% (k=2) | 404.781 ± 0.02% (k=2) | | Low Pance | 3 98462 + 1 50% (k-2) | 3 97818 + 1 50% (k=2) | 3 98287 + 1 50% (k=2) | ## **Connector Angle** | | 97 (CH2 (25.5) Fr (25.6) (CH2 (25.5) | |---|--------------------------------------| | Connector Angle to be used in DASY system | 101.5 ° ± 1 ° | Certificate No: DAE3-359_Jun15 Page 3 of 5 # Appendix (Additional assessments outside the scope of SCS0108) #### 1. DC Voltage Linearity | High Range | Reading (μV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 200030.01 | -2.61 | -0.00 | | Channel X + Input | 20003.85 | 0.10 | 0.00 | | Channel X - Input | -20002.41 | 3.44 | -0.02 | | Channel Y + Input | 200031.71 | -1.24 | -0.00 | | Channel Y + Input | 20002.31 | -1.34 | -0.01 | | Channel Y - Input | -20007.48 | -1.47 | 0.01 | | Channel Z + Input | 200030.66 | -1.71 | -0.00 | | Channel Z + Input | 20004.11 | 0.42 | 0.00 | | Channel Z - Input | -20003.22 | 2.80 | -0.01 | | Low Range | Reading (μV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 2000.29 | 0.09 | 0.00 | | Channel X + Input | 200.60 | 0.34 | 0.17 | | Channel X - Input | -199.54 | 0.14 | -0.07 | | Channel Y + Input | 1999.86 | -0.24 | -0.01 | | Channel Y + Input | 199.99 | -0.04 | -0.02 | | Channel Y - Input | -200.63 | -0.82 | 0.41 | | Channel Z + Input | 2000.06 | 0.03 | 0.00 | | Channel Z + Input | 199.13 | -0.92 | -0.46 | | Channel Z - Input | -201.32 | -1.46 | 0.73 | ## 2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Common mode
Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μV) | |---------------|-----------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | 1.94 | -0.08 | | | - 200 | 1.76 | 0.03 | | Channel Y | 200 | -8.50 | -9.34 | | | - 200 | 8.05 | 8.10 | | Channel Z 200 | -1.06 | -1.56 | | | | - 200 | -0.37 | -0.69 | #### 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Input Voltage (mV) | Channel X (μV) | Channel Y (µV) | Channel Z (μV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | - | 0.30 | -3.32 | | Channel Y | 200 | 9.40 | - | 1.26 | | Channel Z | 200 | 5.89 | 7.35 | - | Certificate No: DAE3-359_Jun15 Accredited for compliance with ISO/IEC 17025. The results of the test, calibrations and/or measurement included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports. #### 4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 15802 | 15880 | | Channel Y | 15982 | 15616 | | Channel Z | 15813 | 15908 | #### 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10Ms | • | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation
(μV) | |-----------|--------------|------------------|------------------|------------------------| | Channel X | 1.23 | -0.03 | 2.28 | 0.47 | | Channel Y | 0.80 | -0.18 | 2.30 | 0.50 | | Channel Z | 0.81 | -0.31 | 2.45 | 0.62 | ## 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance (Typical values for information) | | Zeroing (kOhm) | Measuring (MOhm) | |-----------|----------------|------------------| | Channel X | 200 | 200 | | Channel Y | 200 | 200 | | Channel Z | 200 | 200 | #### 8. Low Battery Alarm Voltage (Typical values for information) | Typical values | Alarm Level (VDC) | | |----------------|-------------------|--| | Supply (+ Vcc) | +7.9 | | | Supply (- Vcc) | -7.6 | | 9. Power Consumption (Typical values for information) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | |----------------|-------------------|---------------|-------------------| | Supply (+ Vcc) | +0.01 | +6 | +14 | | Supply (- Vcc) | -0.01 | -8 | -9 | Certificate No: DAE3-359_Jun15